Sunday, January 28, 2007
Fish can determine their social rank by observation alone, study finds
A male fish can size up potential rivals, and even rank them from strongest to weakest, simply by watching how they perform in territorial fights with other males, according to a new study by Stanford University scientists. The researchers say their discovery provides the first direct evidence that fish, like people, can use logical reasoning to figure out their place in the pecking order.
The study, published in the January 25 edition of the journal Nature, is based on a unique experiment with cichlids (SIK-lids), small territorial fish from Africa.
"In their natural habitat, male cichlids are constantly trying to ascend socially by beating each other up," said study co-author Russell D. Fernald, professor of biological sciences at Stanford. "It would be really valuable for them to know in advance who to pick a fight with."
The Nature experiment was designed by lead author Logan Grosenick (2005 Recipient of The Firestone Medal for Excellence in Undergraduate Research), a graduate student in statistics at Stanford, and Tricia S. Clement, a former postdoctoral fellow. Their goal was to determine whether territorial fish use a type of reasoning called "transitive inference," (*See below) in which known relationships serve as the basis for understanding unfamiliar ones.
"Transitive inference is essential to logical reasoning," Fernald explained. "It's something that kids generally figure out by age 4 or 5 - Mary is taller than Fred, Fred is taller than Pete, therefore Mary is taller than Pete. It's been demonstrated in primates, rats and some bird species, but how and why it evolved in animals is a matter of debate."
Aggressive bouts
In the experiment, the Stanford team used a popular laboratory fish called Astatotilapia burtoni, one of many cichlid species that inhabit Lake Tanganyika in eastern Africa. A. burtoni males are extremely territorial and regularly engage in aggressive fights, the outcome of which determines who gets access to food and mates.
"Males that repeatedly lose fights are unable to hold territories and consequently descend in social status," the authors wrote. "Success in aggressive bouts is therefore crucial to male reproductive fitness, and the ability to infer the relative strength of rivals before engaging them in potentially costly fights should be highly adaptive."
When A. burtoni males fight, it's easy to spot the winner. Mature males have a menacing black stripe, or eyebar, on their face. After a fight, the winner retains his showy appearance, but the loser's eyebar temporarily disappears as he tries to flee his more aggressive opponent.
The Stanford team took advantage of this reversible transformation by staging a series of short fights between male cichlids. All of the combatants used in the experiment were the same size. During one-on-one combat, the fish whose eyebar disappeared was declared the loser.
After each bout, the loser was separated from his opponent and put back in his original tank. Within minutes, his eyebar returned, and he looked like all the other dominant males again.
Bystanders and rivals
The fights were staged in a square tank divided into several compartments. A lone male observer - the "bystander" - was placed in a cubicle in the center of the tank. Surrounding him were five smaller compartments, each with a solitary male rival identified simply as A, B, C, D or E. Researchers made sure that the bystander and his five potential rivals had never met.
Although the bystander remained alone in his cubicle and never swam with the others, he was allowed to observe a series of fights between rival pairs - A vs. B, B vs. C, C vs. D, and D vs. E. Researchers manipulated the fights so that A would dominate B, B would dominate C, and so forth down the line.
"These fights, taken together, imply the dominance hierarchy [where] A is greater than B is greater than C is greater than D is greater than E," the authors wrote. But did the bystander really comprehend this intricate pecking order, and if so, would he use that knowledge to make logical decisions about the same fish paired in new relationships?
To find out, eight different bystanders were tested in the familiar square tank and in a new setting - a rectangular aquarium with three adjacent compartments. In each test, a bystander was placed in the middle compartment between two sets of rivals that he had never seen together - A and E (AE), and B and D (BD). At this point in the experiment, all the rivals had recovered from earlier losses, so their physical appearance was similar, right down to the eyebar. From the point of view of the bystander, therefore, each rival looked like a winner.
Using a video camera, researchers recorded which rival the bystander approached first, and the overall time he spent next to each of them. "Previous experiments in A. burtoni and other fish have shown that time spent in tank quadrants adjacent to a particular male indicates bystander 'preference,' and that bystanders spend more time near the rival they perceive to be weaker," the authors explained.
Losers and winners
The results were dramatic. Virtually all of the bystanders swam to the weaker rival first and stayed near him for a significantly longer period of time. In the AE tests, bystanders preferred E, the wimpiest of all the losers, over A, the top fish in the tank. In the more subtle BD tests, most bystanders chose D over B, even though these two rivals were ranked very close together on the dominance hierarchy.
"These results show that fish do, in fact, use transitive inference to figure out where they rank in the social order," Fernald said. "I was amazed that they could do this through vicarious experience, just by watching other males fight. In Lake Tanganyika, where conditions change all the time, it would be advantageous for a male to know who the new boss is going to be and who his weakest rivals are. Our experiment shows that male cichlids can actually figure out their odds of success by observation alone. From an evolutionary standpoint, transitive inference saves them valuable time and energy."
The results raise the possibility that fish brains might contain the rudimentary neuronal circuitry for transitive inference that appeared later in birds and mammals. "Any animal that has evolved a social system that requires combat among males will have some kind of eavesdropping capability allowing them to surreptitiously draw inferences about their social rank," Fernald said. "Cognitive capacities that evolved in fish may contribute to human transitive inference, or perhaps this capacity evolved independently. The question remains unresolved."
The Nature study was supported with grants from the National Institutes of Health.
Related video
Source: Stanford Report, Stanford University News Service, January 25th 2007
-------
Based on the journal Nature paper:
Fish can infer social rank by observation alone (p429)
Logan Grosenick, Tricia S. Clement and Russell D. Fernald
doi:10.1038/nature05511
Opening paragraph
Transitive inference (TI) involves using known relationships to deduce unknown ones (for example, using A greater than B and B greater than C to infer A greater than C), and is thus essential to logical reasoning. First described as a developmental milestone in children, TI has since been reported in nonhuman primates, rats and birds. Still, how animals acquire and represent transitive relationships and why such abilities might have evolved remain open problems.
Here we show that male fish (Astatotilapia burtoni) can successfully make inferences on a hierarchy implied by pairwise fights between rival males. These fish learned the implied hierarchy vicariously (as 'bystanders'), by watching fights between rivals arranged around them in separate tank units. Our findings show that fish use TI when trained on socially relevant stimuli, and that they can make such inferences by using indirect information alone. Further, these bystanders seem to have both spatial and featural representations related to rival abilities, which they can use to make correct inferences depending on what kind of information is available to them.
Beyond extending TI to fish and experimentally demonstrating indirect TI learning in animals, these results indicate that a universal mechanism underlying TI is unlikely. Rather, animals probably use multiple domain-specific representations adapted to different social and ecological pressures that they encounter during the course of their natural lives.
Related Nature podcast (The podcast begins with Gavin Prideaux and the post "Australia: Nullarbor caves reveal ancient megafauna thrived in dry climate") [Evolution]
-------
*Colin Allen's Transitive inference in animals: Reasoning or conditioned associations? appears in the book "Rational Animals?":
Abstract (available via Allen's Curriculum Vitae webpage)
It is widely accepted that many species of nonhuman animals appear to engage in transitive inference, producing appropriate responses to novel pairings of non-adjacent members of an ordered series without previous experience of these pairings. Some researchers have taken this capability as providing direct evidence that these animals reason. Others resist such declarations, favouring instead explanations in terms of associative conditioning. Associative accounts of transitive inference have been refined in application to a simple 5-element learning task that is the main paradigm for laboratory investigations of the phenomenon, but it remains unclear how well those accounts generalise to more information-rich environments such as social hierarchies which may contain scores of individuals, and where rapid learning is important. The case of transitive inference is an example of a more general dispute between proponents of associative accounts and advocates of more cognitive accounts of animal behaviour. Examination of the specific details of transitive inference suggests some lessons for the wider debate.
Recent posts include:
"New Research Shows Larval Fish Use Smell to Return to Coral Reefs (Video)"
"Talking Fish: Wide Variety of Sounds Discovered"
Technorati: male, fish, rank, territorial, fight, new, study, stanford, university, researchers, discovery, evidence, pecking order, nature, cichlids, africa, natural, habitat, research, transitive, inference, cichlid, species, lake, tanganyika, aggressive, dominance, hierarchy, aquarium, social, system, video, podcast, ti, paradigm
Add to: CiteUlike | Connotea | Del.icio.us | Digg | Furl | Newsvine | Reddit | Yahoo